Eigenvalues and Low Energy Eigenvectors of Quantum Many - Body Systems

نویسندگان

  • Ramis Movassagh
  • Peter W. Shor
چکیده

I first give an overview of the thesis and Matrix Product States (MPS) representation of quantum spin systems on a line with an improvement on the notation. The rest of this thesis is divided into two parts. The first part is devoted to eigenvalues of quantum many-body systems (QMBS). I introduce Isotropic Entanglement (IE) and show that the distribution of QMBS with generic interactions can be accurately obtained using IE. Next, I discuss the eigenvalue distribution of one particle hopping random Schrbdinger operator in one dimension from free probability theory in context of the Anderson model. The second part is devoted to ground states and gap of QMBS. I first give the necessary background on frustration free Hamiltonians, real and imaginary time evolution of quantum spin systems on a line within MPS representation and the numerical implementation. I then prove the degeneracy and unfrustration condition for quantum spin chains with generic local interactions. Following this, I summarize my efforts in proving lower bounds for the entanglement of the ground states, which includes partial results, with the hope that it will inspire future work resulting in solving the conjecture given. Next I discuss two interesting measure zero examples where the Hamiltonians are carefully constructed to give unique ground states with high entanglement. This includes exact calculations of Schmidt numbers, entanglement entropies and a novel technique for calculating the gap. The last chapter elaborates on one of the measure zero examples (i.e., d = 3) which is the first exam3 ple of a Frustration Free translation-invariant spin-i chain that has a unique highly entangled ground state and exhibits signatures of a critical behavior. Thesis Supervisor: Peter W. Shor Title: Professor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of strong force influence on behavior of nuclear energy levels in Calcium and Titanium isotopes: Based on quantum chaos theory

The atomic nucleus is a complex many-body system that consists of two types of fermion (neutron and proton). They are in the strong interaction. The statistical properties of energy levels and influence of strong force between these fermions are well described by random matrix theory. Resonance of energy levels depends on the Hamiltonian symmetry placed in one of the GOE, GUE and GSE ensembles ...

متن کامل

Quantum Mechanics of Damped Systems

We show that the quantization of a simple damped system leads to a self-adjoint Hamiltonian with a family of complex generalized eigenvalues. It turns out that they correspond to the poles of energy eigenvectors when continued to the complex energy plane. Therefore, the corresponding generalized eigenvectors may be interpreted as resonant states. We show that resonant states are responsible for...

متن کامل

Tutorial on Quasi-sparse Eigenvector Diagonalization

Quasi-sparse eigenvector (QSE) diagonalization is a new computational method which finds the low-lying eigenvalues and eigenvectors for a general quantum field Hamiltonian . It is able to handle the exponential increase in the size of Fock space for large systems by exploiting the sparsity of the Hamiltonian. QSE diagonalization can even be applied directly to infinitedimensional systems. The m...

متن کامل

Deflated and Restarted Symmetric Lanczos Methods for Eigenvalues and Linear Equations with Multiple Right-Hand Sides

A deflated restarted Lanczos algorithm is given for both solving symmetric linear equations and computing eigenvalues and eigenvectors. The restarting limits the storage so that finding eigenvectors is practical. Meanwhile, the deflating from the presence of the eigenvectors allows the linear equations to generally have good convergence in spite of the restarting. Some reorthogonalization is ne...

متن کامل

Quantum Algorithms

This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Fast algorithms for simulating ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012